Finding middle ground? Multi-objective Natural Language Generation from time-series data
نویسندگان
چکیده
A Natural Language Generation (NLG) system is able to generate text from nonlinguistic data, ideally personalising the content to a user’s specific needs. In some cases, however, there are multiple stakeholders with their own individual goals, needs and preferences. In this paper, we explore the feasibility of combining the preferences of two different user groups, lecturers and students, when generating summaries in the context of student feedback generation. The preferences of each user group are modelled as a multivariate optimisation function, therefore the task of generation is seen as a multi-objective (MO) optimisation task, where the two functions are combined into one. This initial study shows that treating the preferences of each user group equally smooths the weights of the MO function, in a way that preferred content of the user groups is not presented in the generated summary.
منابع مشابه
Methodology for Detection and Interpretation of Ground Motion Areas with the A-DInSAR Time Series Analysis
Recent improvement to Advanced Differential Interferometric SAR (A-DInSAR) time series quality enhances the knowledge of various geohazards. Ground motion studies need an appropriate methodology to exploit the great potential contained in the A-DInSAR time series. Here, we propose a methodology to analyze multi-sensors and multi-temporal A-DInSAR data for the geological interpretation of areas ...
متن کاملChoosing the content of textual summaries of large time-series data sets
Natural Language Generation (NLG) can be used to generate textual summaries of numeric data sets. In this paper we develop an architecture for generating short (a few sentences) summaries of large (100KB or more) time-series data sets. The architecture integrates pattern recognition, pattern abstraction, selection of the most significant patterns, microplanning (especially aggregation), and rea...
متن کاملLinguistic Summarization of Time Series Data using Genetic Algorithms
In this paper, the use of an evolutionary approach when obtaining linguistic summaries from time series data is proposed. We assume the availability of a hierarchical partition of the time dimension in the time series. The use of natural language allows the human users to understand the resulting summaries in an easy way. The number of possible final summaries and the different ways of measurin...
متن کاملروش جدید تقطیع تصویر بر مبنای خوشهبندی فازی مبتنی بر تکامل تفاضلی چندهدفه
Image segmentation is one of the most important and difficult steps in machine vision problems and achieving the desired results often requires satisfaction of different objectives. One approach to face this situation uses multi-objective fuzzy clustering of pixels in the feature space. This paper proposes a new strategy for search within the family of multi-objective differential evolution alg...
متن کاملPervasive white and colored noise removing from magnetotelluric time series
Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014